3.1098 \(\int \frac{\sqrt{d x}}{\sqrt{a+b x^2+c x^4}} \, dx\)

Optimal. Leaf size=147 \[ \frac{2 (d x)^{3/2} \sqrt{\frac{2 c x^2}{b-\sqrt{b^2-4 a c}}+1} \sqrt{\frac{2 c x^2}{\sqrt{b^2-4 a c}+b}+1} F_1\left (\frac{3}{4};\frac{1}{2},\frac{1}{2};\frac{7}{4};-\frac{2 c x^2}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}\right )}{3 d \sqrt{a+b x^2+c x^4}} \]

[Out]

(2*(d*x)^(3/2)*Sqrt[1 + (2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*AppellF
1[3/4, 1/2, 1/2, 7/4, (-2*c*x^2)/(b - Sqrt[b^2 - 4*a*c]), (-2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])])/(3*d*Sqrt[a + b
*x^2 + c*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.121396, antiderivative size = 147, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.083, Rules used = {1141, 510} \[ \frac{2 (d x)^{3/2} \sqrt{\frac{2 c x^2}{b-\sqrt{b^2-4 a c}}+1} \sqrt{\frac{2 c x^2}{\sqrt{b^2-4 a c}+b}+1} F_1\left (\frac{3}{4};\frac{1}{2},\frac{1}{2};\frac{7}{4};-\frac{2 c x^2}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}\right )}{3 d \sqrt{a+b x^2+c x^4}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[d*x]/Sqrt[a + b*x^2 + c*x^4],x]

[Out]

(2*(d*x)^(3/2)*Sqrt[1 + (2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*AppellF
1[3/4, 1/2, 1/2, 7/4, (-2*c*x^2)/(b - Sqrt[b^2 - 4*a*c]), (-2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])])/(3*d*Sqrt[a + b
*x^2 + c*x^4])

Rule 1141

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^2 +
 c*x^4)^FracPart[p])/((1 + (2*c*x^2)/(b + Rt[b^2 - 4*a*c, 2]))^FracPart[p]*(1 + (2*c*x^2)/(b - Rt[b^2 - 4*a*c,
 2]))^FracPart[p]), Int[(d*x)^m*(1 + (2*c*x^2)/(b + Sqrt[b^2 - 4*a*c]))^p*(1 + (2*c*x^2)/(b - Sqrt[b^2 - 4*a*c
]))^p, x], x] /; FreeQ[{a, b, c, d, m, p}, x]

Rule 510

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a^p*c^q
*(e*x)^(m + 1)*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, -((b*x^n)/a), -((d*x^n)/c)])/(e*(m + 1)), x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rubi steps

\begin{align*} \int \frac{\sqrt{d x}}{\sqrt{a+b x^2+c x^4}} \, dx &=\frac{\left (\sqrt{1+\frac{2 c x^2}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}}\right ) \int \frac{\sqrt{d x}}{\sqrt{1+\frac{2 c x^2}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}}} \, dx}{\sqrt{a+b x^2+c x^4}}\\ &=\frac{2 (d x)^{3/2} \sqrt{1+\frac{2 c x^2}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}} F_1\left (\frac{3}{4};\frac{1}{2},\frac{1}{2};\frac{7}{4};-\frac{2 c x^2}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}\right )}{3 d \sqrt{a+b x^2+c x^4}}\\ \end{align*}

Mathematica [A]  time = 0.102948, size = 173, normalized size = 1.18 \[ \frac{2 x \sqrt{d x} \sqrt{\frac{-\sqrt{b^2-4 a c}+b+2 c x^2}{b-\sqrt{b^2-4 a c}}} \sqrt{\frac{\sqrt{b^2-4 a c}+b+2 c x^2}{\sqrt{b^2-4 a c}+b}} F_1\left (\frac{3}{4};\frac{1}{2},\frac{1}{2};\frac{7}{4};-\frac{2 c x^2}{b+\sqrt{b^2-4 a c}},\frac{2 c x^2}{\sqrt{b^2-4 a c}-b}\right )}{3 \sqrt{a+b x^2+c x^4}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[d*x]/Sqrt[a + b*x^2 + c*x^4],x]

[Out]

(2*x*Sqrt[d*x]*Sqrt[(b - Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2
*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[3/4, 1/2, 1/2, 7/4, (-2*c*x^2)/(b + Sqrt[b^2 - 4*a*c]), (2*c*x^2)/(-
b + Sqrt[b^2 - 4*a*c])])/(3*Sqrt[a + b*x^2 + c*x^4])

________________________________________________________________________________________

Maple [F]  time = 0.059, size = 0, normalized size = 0. \begin{align*} \int{\sqrt{dx}{\frac{1}{\sqrt{c{x}^{4}+b{x}^{2}+a}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x)^(1/2)/(c*x^4+b*x^2+a)^(1/2),x)

[Out]

int((d*x)^(1/2)/(c*x^4+b*x^2+a)^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{d x}}{\sqrt{c x^{4} + b x^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^(1/2)/(c*x^4+b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(d*x)/sqrt(c*x^4 + b*x^2 + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{d x}}{\sqrt{c x^{4} + b x^{2} + a}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^(1/2)/(c*x^4+b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(d*x)/sqrt(c*x^4 + b*x^2 + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{d x}}{\sqrt{a + b x^{2} + c x^{4}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)**(1/2)/(c*x**4+b*x**2+a)**(1/2),x)

[Out]

Integral(sqrt(d*x)/sqrt(a + b*x**2 + c*x**4), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{d x}}{\sqrt{c x^{4} + b x^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^(1/2)/(c*x^4+b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(d*x)/sqrt(c*x^4 + b*x^2 + a), x)